Condensed Memory Networks for Clinical Diagnostic Inferencing

نویسندگان

  • Aaditya Prakash
  • Siyuan Zhao
  • Sadid A. Hasan
  • Vivek Datla
  • Kathy Lee
  • Ashequl Qadir
  • Joey Liu
  • Oladimeji Farri
چکیده

Diagnosis of a clinical condition is a challenging task, which often requires significant medical investigation. Previous work related to diagnostic inferencing problems mostly consider multivariate observational data (e.g. physiological signals, lab tests etc.). In contrast, we explore the problem using free-text medical notes recorded in an electronic health record (EHR). Complex tasks like these can benefit from structured knowledge bases, but those are not scalable. We instead exploit raw text from Wikipedia as a knowledge source. Memory networks have been demonstrated to be effective in tasks which require comprehension of free-form text. They use the final iteration of the learned representation to predict probable classes. We introduce condensed memory neural networks (C-MemNNs), a novel model with iterative condensation of memory representations that preserves the hierarchy of features in the memory. Experiments on the MIMIC-III dataset show that the proposed model outperforms other variants of memory networks to predict the most probable diagnoses given a complex clinical scenario.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical Question Answering using Key-Value Memory Networks and Knowledge Graph

We describe our clinical question answering system implemented for the Text Retrieval Conference (TREC 2016) Clinical Decision Support (CDS) track. We submitted five runs using a combination of knowledge-driven (based on a curated knowledge graph) and deep learning-based (using key-value memory networks) approaches to retrieve relevant biomedical articles for answering generic clinical question...

متن کامل

Efficient Inferencing of Compressed Deep Neural Networks

Large number of weights in deep neural networks makes the models difficult to be deployed in low memory environments such as, mobile phones, IOT edge devices as well as “inferencing as a service” environments on cloud. Prior work has considered reduction in the size of the models, through compression techniques like pruning, quantization, Huffman encoding etc. However, efficient inferencing usi...

متن کامل

A New Uncertainty Measure for Belief Networks with Applications to Optimal Evidential Inferencing

ÐThis paper is concerned with the problem of measuring the uncertainty in a broad class of belief networks, as encountered in evidential reasoning applications. In our discussion, we give an explicit account of the networks concerned, and coin them the Dempster-Shafer (D-S) belief networks. We examine the essence and the requirement of such an uncertainty measure based on welldefined discrete e...

متن کامل

Using Neural Embeddings for Diagnostic Inferencing in Clinical Question Answering

In this paper, we describe our clinical question answering system implemented for the Text Retrieval Conference (TREC 2015) Clinical Decision Support (CDS) track. We submitted six runs for two related tasks using a multi-step approach that leverages Natural Language Processing (NLP) and neural embeddings to retrieve relevant biomedical articles for answering generic clinical questions. Evaluati...

متن کامل

L2 Learners’ Lexical Inferencing: Perceptual Learning Style Preferences, Strategy Use, Density of Text, and Parts of Speech as Possible Predictors

This study was intended first to categorize the L2 learners in terms of their learning style preferences and second to investigate if their learning preferences are related to lexical inferencing. Moreover, strategies used for lexical inferencing and text related issues of text density and parts of speech were studied to determine their moderating effects and the best predictors of lexical infe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017